Identification and signatures based on NP-hard problems of indefinite quadratic forms
نویسندگان
چکیده
منابع مشابه
Identification and signatures based on NP-hard problems of indefinite quadratic forms
We prove NP-hardness of equivalence and representation problems of quadratic forms under probabilistic reductions, in particular for indefinite, ternary quadratic forms with integer coefficients. We present identifications and signatures based on these hard problems. The bit complexity of signature generation and verification is quadratic using integers of bit length 150.
متن کاملOn Indefinite Binary Quadratic Forms and Quadratic Ideals
We consider some properties of indefinite binary quadratic forms F (x, y) = ax +bxy−y of discriminant ∆ = b +4a, and quadratic ideals I = [a, b−√∆ ]. AMS Mathematics Subject Classification (2000): 11E04, 11E12, 11E16
متن کاملQuadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms II
Let D = 1 be a positive non-square integer and let δ = √ D or 1+ √ D 2 be a real quadratic irrational with trace t = δ + δ and norm n = δδ. Let γ = P+δ Q be a quadratic irrational for positive integers P and Q. Given a quadratic irrational γ, there exist a quadratic ideal Iγ = [Q, δ + P ] and an indefinite quadratic form Fγ(x, y) = Q(x−γy)(x−γy) of discriminant Δ = t − 4n. In the first section,...
متن کاملBailey Pairs and Indefinite Quadratic Forms
We construct classes of Bailey pairs where the exponent of q in αn is an indefinite quadratic form. As an application we obtain families of q-hypergeometric mock theta multisums.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Cryptology
سال: 2008
ISSN: 1862-2976,1862-2984
DOI: 10.1515/jmc.2008.015